230 Kth Smallest Element in a BST
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Example 1:
Input: root = [3,1,4,null,2], k = 1
Output: 1
Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3
Output: 3
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
First Method, O(n) time complexity, use stack and inorder traversal
Notice: for inorder traversal while (!stack.isEmpty() || curt != null) for outer loop
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
/***
3
/ \
1 4
\
2
***/
class Solution {
public int kthSmallest(TreeNode root, int k) {
if (root == null || k == 0) {
return 0;
}
Stack<TreeNode> stack = new Stack<>();
//inorder traversal
TreeNode curt = root;
while (curt != null || !stack.isEmpty()) {
while (curt != null) {
stack.push(curt);
curt = curt.left;
}
curt = stack.pop();
k--;
if (k == 0) {
return curt.val;
}
curt = curt.right;
}
return -1;
}
}